The realization space is [1 1 0 2*x1 - 1 0 1 1 0 2*x1 - 1 x1^2 + x1 - 1 1] [0 1 1 -x1^3 + 2*x1 - 1 0 0 1 x1^2 + x1 - 1 -x1^3 + 2*x1 - 1 -x1^3 + 2*x1 - 1 -x1^2 - x1 + 1] [0 0 0 0 1 1 1 -2*x1 + 1 2*x1^2 - x1 2*x1^2 - x1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^8 - 2*x1^7 + 4*x1^6 + 3*x1^5 - 6*x1^4 + 2*x1^3) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, 2*x1 - 1, x1^3 + x1^2 + x1 - 1, x1^2 + 2*x1 - 1, x1 + 1, x1^2 + x1 - 1, x1^3 + 2*x1^2 - 3*x1 + 1, x1^4 + 2*x1^2 - 3*x1 + 1, x1^2 + 3*x1 - 2]